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Differential Equation

Differential Equation: An equation containing the derivatives of one or more dependent
variables, with respect to one or more independent variables, is said to be a differential equation

(DE).
Classification of differential equations

Ordinary Differential Equation (ODE): If an equation contains only ordinary derivatives of
one or more dependent variables w.r.t. a single independent variable; it is said to be an ODE.

E le: _
xample ler 5y = ¢
dx

Partial Differential Equation (PDE): An‘equation involving the partial derivatives of one or
more dependent variables w.r.t. two or more independent variable is called a PDE

2 2

Example: - -
P 0z o°u 041
'3,

ou A a3z dz
-2 — — = 2X(—
ot ﬂx) T ay? (0}’

—

0z .
+E—Z+xy = —

x- o1

2

ax

The order of a partial differential equation is the order of the highest derivative involved.
A solution_(or a particular solution) to a partial differential equation is a function that solves the
equation or;-in other words, turns it into an identity when substituted into the equation.

oT  _0°T

Heat Conduction Equation (1-D): —=C——
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Classification of Partial Differential Equations (PDES)
There are 6 basic classifications:

(1) Order of PDE

(2) Number of independent variables
(3) Linearity

(4) Homogeneity

(5) Types of coefficients

(6) Canonical forms for 2nd order PDEs
(1) Order of PDEs
The order of a PDE is the order of the highest partial derivative in the equation.
Examples: 2
6_u — 6_u ou — o°u ou 63u
ot  ox ot ox? E=u—ax3 +SinX
(1st order) (2nd order)

3rd order
(2) Number of Independent Variables ( )

Examples: _
(2 variables: x and t) (3 variables: r, 6, and t)
ou _9°u u_o°u_1éu 1d%
ot x> ot or2 ror 2 pp?
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(3) Linearity

PDEs can be linear or non-linear. APDE is linear if the dependent variable and all its

derivatives appear in a linear fashion (i.e.

for example.
Examples:
2 2
(Linear) o°u —, =€ ~t0°u 2+S|nt
ot OX
2 2
(Linear) o°u o°u
—tyY_ =0
OX oy
(Linear) 0%, 0% ou_g

ox>  oxdy py?

Engineering Analysis

they are not multiplied together or squared

2
(Non-linear) ua u 6u
6x2 ot
(Non-linear) Xa_u+ ya_u 2_0
OX
i 62u+(6u)2+sinu—ey
(Non-linear) 6X2 ox
2
(Non-linear) (au) +u6_u=1
OX oy
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(4) Homogeneity

A PDE is called homogenous if after writing the terms in order, the right hand side is zero.

Examples:
2 2
(Non-homogeneous) 6‘; ou —f(x Y)
OX ay
2
(Homogeneous) o°u_ou
ox° ot
] ou_o%
(Homogenous) 52 ox2

(5) Types of Coefficients

(Non-homogeneous) a_u ou _ =uU-5
ax ot

r?(u—5)_|_6(u—5)=u_5
OX ot

(Homogeneous)

If the coefficients in front of 'each term involving the dependent variable and its derivatives are
independent of the variables (dependent or independent), then that PDE is one with constant

coefficients.
Examples

(Variable.coefficients)

(C constant; constant coefficients)

Engineering Analysis

62u 262u 0
ox2 oy
2 2

al;_cag_o
OX ot
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(6) Canonical forms for 2nd order PDEs (L.inear)

62 02 o°u . ou =ou
~ o T C—2 +D——+E_—+Fu=G (standard Form)
6x 6X6y B, OX 6y
where A, B, C, D, E, F, and G are either real constants or real-valued functions of
x and/ory.

Ax2+Bxy+Cy2+Dx+Ey+F=O

This terminology of elliptic, parabolic, and hyperbolic, reflect the analogy between the
standard form for the linear, 2nd order PDE and conic sections encountered in analytical
geometry:

B2_4AC<0=  PDE.isElliptic

B2 —4AC=0= . (PDE isParabolic

82 —4JACS>S 0> PDE is Hyperbolic

Parabolic PDE = solution “propagates” or diffuses

Hyperbolic PDE = solution propagates as a wave
Elliptic PDE = equilibrium
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Examples

o°u . d%u
(@ —5+2—=0 Here, A=1, B=0, C=2, D=E=F=G=0 =
OX oy
B2-4AC =0 - 4(1)(2) = -8 < 0 = this equation is elliptic.
8°u ,0%u 2 2
(b) 62—2ay =0 AxX®+Bxy+Cy“+Dx+Ey+F=0
X

Here, A=1, B=0, C=-2, D=E=F=G=0 = B2-4AC =0 - 4(1)(-2) = 8 > 0 = this equation is
hyperbolic.
2
(c) 9U_,_
ox* oy
Here, A=1, B=0, E=-2, C=D=F=G=0 = B2-4AC = 0 - 4(1)(0) = 0 = this equation is
parabolic.

2 2 2
A 6_ o°u L C 6_ 6u g ou CFUZG
e 6x6y 6y2 6x 6y
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Solution of Partial Differential Equations

Separation of Variable Solutions
Separation of variables is a technigue for solving some partial deferential equations.

Assume the function you're looking for, u(x; t), can be written as a product of a function of x only
and a function of t only:

2
u(x; t) = X(x) T(t) le;—gl:=0
Then it is easy to take derivatives:
ux = X (x)T(t) ux = X" (x)T(t)
us = X()T' (t) ue = X(x)T"(t)
Plug them in to the partial deferential equation.
Try to separate the variables: (function of x only) = (function of t only)

If you can, then both sides must be constant:  (function of x only) = A = (function of t only)

Reorganize these into two ordinary deferential equations

function of x only) = 4 ( (function of t only) = A

which you can solve separately for X and T.
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Example 1
Use separation of variables to convert the following partial deferential equation into
two ordinary deferential equations:

Uax + x U= 0
u(x; t) = X(x)T(¢t)
ur= X' (x) T(t)
we = X" (x) T(t)
u= X(x)T'(t)

Plug in to the PDE: X'"(x)T@)+ xX()T'(t) =0

X"(x)  T'(®) ~
C xXkx)  T®.

v () +AxX(x)=0

T'(t)— AT(t) = 0
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Example 2
Use separation of variables to convert the following partial differential equation into two
ordinary deferential equations:

Ut + Ut + Ux = 0
u(x; t) = X(x)T(t)
ur = X' (x) T(t)

ue = X()T" (x)

ux = X' ()T’ (t)
Plug in to the PDE: X(x)T" (x) + X' ()T’ (t) + X' (x)T(t) = 0

XGOT" (%) + X' QO[T (t) + T(®)] = 0

X' ([T () +T@)] = —X¥(x)T" (x)

X' T (@)

XG) T + 10

X))+ AX(x) =0

T" (£) = AT’ (£)- AT(t) = 0
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Example 3 Solve by the separation of variables 3u,+u, = 0, given that u(x,o0) = 4e™*

. . ou ou
Solution given 35 + 2 3 = 0,

u(x;y) = XY (1) whereu(x; t) = X(x) =X andY(y) =Y

3o+ Ly 0 2 _ 2

Ox dy - Xdx  Ydy

3d—X=k = 3d—X=kdx

X dx X

X
:LTLX:?-FCl
X=ek3_x+C1
-ky

T g Iy =— Yy  v=ezto
Y dy Y 2 2

Substitute X and Y in+(1)

X
U — ek (g —%)+C1+ Cy
alsou(x,0) = 4e™*

4e—x:ek§+cl+02= Aek§
32y
so A=4 andk=-3 = U= 4e "3 2
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Example 4

Use separation of variables to convert the heat equation below into two ordinary differential

equations. (For later purposes, use —A instead of A for the separation constant.)

U= A Uy,

u(x; t) = X(x)T(t)

ux = X' (x) T(t)
Uex = X" (.X') T(t)

u = X()T' (t)
Plug in to the PDE: u: = a? uy, » XO)T' (t) = a? X" (x) T(¢t)
X"(x) T'(@t) .
X(x)  a?T@®). .
X”(X) -
X(x)y -

—A

X))+ AX(x) =0
T'(t)

2T - -y » T'(t) + 22?2 T(t) =0 ;
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1D Heat equation

2
Consider 1D heat equation of the form %—1" = a? %. This function is defined on the spatial

domain 0 < x <Landt > 0. BCs: u(0,t) = u(L,t) = 0, IC: u(x,0) = f(x)..Solve the
equation using separation of variable

ou 262u = o

E =a ﬁ XX
u(x; t) = X(x)T(t)

ux = X' (x) T(t) ux = X" (x) T(t)

u=Xx) T' (t)

2
Now, substituting these expression into  2\%_ aza_':. » XCGO)T' () = a?2 X" (x) T(¢)
dat dx
Separating variables, we obtain
X"x) T
X(x)  a?T(t)

X”(.X') C k
X))~ X"(x)— kX(x) =0

T'(t)
2T " T'(t) —ka?T(t) =0

13
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. There are three distinct cases affecting general solution.

k <0 (Negative coefficienty k=0 (Null coefficient) k >0 (positive coefficient)

It is convenienttoset k= —1% fork <0 andk =A% fork >0 X"(x) — kX(x) = 0
Case 1) What if K=0 ? Then it follows that

T' (t) = 0 X"(x)=0 X'(0) — kX(x) = vT’(t)—kaZ T() =0
The general solutions are :

T(@)= A1 and X(x) = Blx + C1 _,thusu = XT =A1(Blx +C1)
Applying BC which u(0,t) = u(L,t) = 0.=X(0,t) = X(L,t) =0 vyields

We get that B1 = C1 =0This leadtou =0 This trivial solution we reject k = —12=0

; — )2 — )2
Case 2) lf k>0=21 then k = A< and thus X//(x) . kX(X) =0
X"(x) —A*X(x) =0 T'(t)—A2a?T(t)=0
which-yields the following parametrized general solutions

T(t) = A2 e*@’t X(x) = B2e™ + C2e™™

thus u(x; t) = X(x) T(t) =A2 eazllzt (B2 elx 4 CZe—)Lx)
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Applying BC which u(0,t) = u(L,t) = 0=X(0,t) = X(L,t) = 0 yields

To determine B2 and C2, we apply the BC X(0) =0, X(L) = 0 to have
X(x) = B2e*™ + C2e™ X(0)=B2+C2=0,

X(L) = BeM + Ce =0

B2 (e/u' — e_/u') =0 as A >0.

B2 (e -1)=0 » B2=0 Thus C2=0

this implies u(x, t) = 0 this trivial solution we reject k >0
Case3)if k<0 =—4° X'"(x)— kX(x) =0

C2=-B2

X'+ 2X(@) = 0 T % Ba?T(t)=0 X ()-AX@) =0

The general solution

T(t) = A3 e~ “ X(x) = B3 cos(Ax) + C3sin((4Ax)

thus . u(x; t) = X(x)T(t) =43 e~ **°t (B3 cos (Ax) + €3 sin(Ax))

To determine B3 and €3, we apply the BC X(0) =0, X(L) =0 to have

X(0)=0=B3(1)+0 thislead B3 =0
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X(L)= B3 cos(AL) + C3sin(4L) =0
As B3 = 0 the equation reduces to €3 sin((LA) =0
forthiscase C3=0or sin(41L) =0

we reject C3 = 0 because of trivial solution.

sosin(AL)=0= AL =nnm or A= n% X(x) = B3 cos (Ax) + (3 sin (Ax)
. (nm a? ”2’;2
X, (x)=Cn sin (Tx) T(tH)=ane~ ¢t
2 leTl'z

00 _ 00 _“ L? ¢ . nm
u(x; t) Yg=qu(x; t) =Ya-iCne sin (Tx)

Finally recall initial condition u(x,0) = f(x). We simply force our solution to agree
with this

u(x;0) =)« cn sin (nL—nx)
which is called-a Fourier sine series (FSS) with c,, ‘s are given by the formula

2 .l .
c, = 7f0 F(x)sm# dx
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Wave equation
Solution of partial differential equation for vibration of a string:

2 2
Consider a wave on a guitar string. In the simplest case gTZ'.: a’ %. The length of the

string =L, and it is fixed at both ends at x = 0 and x = L, and as a result we know
0 <x <Landt > 0.BCs:u(0,t) = u(L,t) = 0,IC: u(x,0) = f(x)andu;(x,0) =
0). Solve the equation using separation of variable

;I
»

A

Vibration aftert = 0*

-
-
-

”
= —— ———

X Shape @ t = 0: f(x)
» Instantaneous
Displacement
@ x and time t: u(x,t)

Initial shape

The deflection of the string ‘at x-distance from the end at x = 0 at time t into the vibration
can be obtained by solving the following partial differential equation:

o’u(x,t) . o°u(x,t)

ot? OX?

i1 which _ [P with P =tension in the string, and m = mass density of the
inwhich —a = m String per unit length
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Solution
u(x,t) = X(x) T(t)

wee = X" (x) T(t) ue = X(x) T" (1)
Now, substituting these expression into  9*u _ 2 9°u X(x) T"(t) = a? X" (x) T(¢t)
ot?’ 0x?

X”(.X') B T (t) B
X(x) a?T(t)

X”(X) B . B
X0 =k X'(x)— kX(x) =0

"®) _ . T"@® - ka?T(®) =0
a?T(t)

Looking at the boundary conditions, we conclude if k <0 = —A2? for case 3

o X"(x)+2%°X(x) = 0

2
N1+ aT(E) = 0

and thus we get the general solution for X(x) and T(t) of

X”(X) B T// (t) B
X(x) a?T@) =~

X(x) = Acos(dx) + B sin((4Ax)
T(t) = C cos(Aat) + D sin((Aat)
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Because we have knew that y(x,t) = X(x)T(t)

X(x) = Acos(Ax) + B sin((Ax) T(t) = C cos(Aat) + D sin((Aat)

thus u(x; t) =[Acos (Ax) + B sin(Ax)] [C cos(Aat) + D sin((Aat)]

where A, B, C, and D are arbitrary constants need to be determined from initial and houndary conditions
given in above equation.

The B.C and IC are

X(x) = Acos(Adx) + B sin((4x) T(T) = C cos(Aat) + D sin((Aat)
X(0)=0 X(L)=0
T(0) = f(x) am _,
Determination of arbitrary constants: dt |,

Let us start with the solution: X(x) = A cos(4x) + B sin((1x)
FromB.C X(0)=0. —> Acos (1*0) + Bsin (1*0) = 0, which means that A= 0
Now, from B:C): X(L) =0: —> X(L) = 0 = B Sin(AL)

Atthis point, B = 0, or Sin (4 L) = 0 from the above relationship. A careful look at these
choices will conclude that B # 0, which leads to:

Sin(AL)=0 —> AL=nm or An =
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Now, if we substitute the solution of X(x) and 4,, = n% inu (t, x),
u(x,t) = [Acos (Ax) + B sin(Ax)] [C cos(Aat) + D sin((Aat)]

we get:
u(x,t) = Bsin (n%x) [C cos(n% at) + D sin (n% at)] (n=1,2,3,....... )

By combining constants B, C and D in the above expression, we obtain u(x,t) to':
. nm nm . nn
u(x,t) = sin (Tx) [Cncos(Tat) + D,,sin ( Tat)] N=1,23,..... )

We are now ready to use the two initial conditions to determine constants C, and D,, in the above expression:
ou(x,t)
ot

=0

t=0

Let us first look at the condition :

=0 =

|au(x,t) nan sin (nT” x) |[ —Cpsin( nTn at) + D, cos ( nTn at)]|

ot li=p t=0

, . N
But since SlnTﬂx;tO EE— D,=0

. (n n
u(x, t) = Ym=q1 C, sin (Tn x) cos( % at)
In~order to determine constant coefficients C, in previous equation :

The last remaining condition of u(x , o) = f(x) will be used for this purpose, in which f(x) is the initial
shape of the string.
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Thus, by letting u(x,0) = f(x), we will have:
u(x,t) = Ym=q1 C, sin (nTn x) cos( n% at)

u(x,0) = Yy Gy sin (——x) = £(2)

00 . nm
f(x)= Lp=1 Gy sin (T x) which is called a Fourier sine series (FSS)

The coefficient C, of the above Fourier series is:

C, = %f(: F(x)sin# dx

The complete solution of the amplitude.of vibrating string u(x, t) becomes:

0

2 2 eL . nhxX nzat .. nxX
u(x,t)=)>) — f (x)SIn——dx |Cos —— Sin——
(x,t) ZLU (x)Sin— j - -

n=

21
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Laplace’s Equation

0°u  0%u
+ 2% = 0
0x?2 dy?

Note that the equation has no dependence on time, just on the spatial variablesx, y.(This
means that Laplace’s Equation describes steady state situations such as:

» steady state temperature distributions

« steady state stress distributions

e steady state flows, for example in a cylinder, around a corner,

Example
Solve using variable separation, the temperaturg eéguilibrium distribution in rectangular plate.

Uyy + Uyy = 0, 0 <x <IL, 0 <y <H,
u(x,0) = f(x), u(x,H)= 0, u(x, H) =10
u(0,y) = uL,y) = 0, i
Solution
u(x,y) = X@YO) u(0,)=0 | v2u—o | u(Ly) =0
X"OYQ) +Y"(y) X(x) = 0
X"(x) Y (y) 0 X
= — = —/12 ﬂ L
X (x) Y(y) u(x,0) = f(x)
X" (x) + 22X(x) = 0 Y"(x) — 22Y(y) = 0 2
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Looking at the boundary conditions, we conclude if k <0 = —A2 for case 3
and thus we get the general solution for u(x, y) = X(x) and Y(Y) of
us we g g uti U(X y) (X) ( ) Y”(X) —AZY(}/) =0

X(x) = Acos(Ax) + B sin((4Ax) Y(y) = Ce? + De= W
\ | X" () + 12X (x) =
u(x, y) = [A cos(1x) + B sin((A1x)] (Ce” + De=*)

where A, B, C, and D are arbitrary constants need to be determined from. initial and boundary conditions
given in above equation.

)

The B.C and IC are
X(x) = Acos(Ax) + B sin((1x) Y(y) = Ce? + De

X(0) =0 X(L) =0 u(x,O) = f(x) U(X,H) = 0

«L_et us start with the solution: X(x) = A cos(4x) + B sin((Ax)

From B.C  X(0) =.0: Acos (A*0) + Bsin(A*0) = 0, which meansthat A=0

Now, from B.C): X(L) = O: X(L) = 0 = B Sin(AL)

At this-point, B = 0, or Sin (A L) = 0 from the above relationship. A careful look at these choices
will eonclude that B # 0, which leads to:

Sin (AL) =0 JL =nm or
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X(x)n= By, sin (nTﬂ x) X(x) = Acos(Ax) + B sin((Ax)

nm _nm
Y(y) =Ce L ¥ +De” L7

We are now ready to use the two boundary conditions to determine constants C and D qn the above
expression:;
The boundary condition  u(x, H) =0

Therefore CenTnH n De—nT"H -0

n
Thus D:—CQZTT[H

Therefore, Y (y) becomes

nn N=xn nn nn nn
Y(y)=Ce L e L e ?—e L Me” 1Y)

Yi)=Ce T H(e T H _ g1

nr g, nm
Y(y)=—2Ce L 7 (sinh A (H —y)

24
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Therefore, the solution of u(x, y) becomes
nnr

u(x,y) = B, sin (nTﬂx) (=2)C,e & ™ (sinh nTn (H —y)

or o
nm nm
u(x,y) = z b,, sin (T x) (sinh — (H —vy)
n=1

In order to determine constant coefficients b, in previous equation.:
The last remaining condition of u(x , o) = f(x) will be used for this purpose

nrm nrm
f(X) = z bn (Sil’lh TH) sin (TX)
n=1
put £, = b, (sinh nTnH), we get

fx) = z E, sin (%x) which is called a Fourier sine series (FSS)
n=1

2l ., NUX
The coefficient F;, of the above Fourier series is: Fn = 7f0 F(x)smT dx

25
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The two-dimensional wave equation

Consider a thin elastic membrane stretched tightly over a
rectangular frame. Suppose the dimensions of the frame are a x b
and that we keep the edges of the membrane fixed to the frame.

We let

( £) = deflection of membrane from equilibrium at
H Y )= bosition (x,y) and time t. b

For a fixed t, the surface z = u(x, y.t) gives the shape of the
membrane at time t.

Under ideal assumptions (e.g. uniform membrane density, uniform
tension, no resistance to motion, small deflection, etc.) one can
show that u satisfies the two dimensional wave equation

Uy = c2V20 = (U + Uyy) (1)

forO < x < a, 0<y < b.
Boundary conditions

-

u(0,y,t) =u(a,y,t) =0, 0<y<b, t>0,
u(x,0,t) = u(x, b, t) =0, 0<x<a t>0. (2)
u(x,y.0) = f(x.y). (x,y) € R.
ug(x,y.0) = g(x.y). (x.¥) € R. (3)
where R = [0, 2] x [0,b].  Solve this problem using separation of variables. 26
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Solution u(x,y,t) = X()Y(y)T(t).
Firstly
Plugging this into the wave equation (1) we get

XYT" =c* (X"YT +XY"T).
If we divide both sides by ¢2XYT this becomes
TH XH YH
f— —|— .
c2T X Y
Because the two sides are functions of different independent
variables, they must be constant:

TH XH YH
2T AT X Ty

The first equality becomes

T" — c2AT = 0.

The second can be rewritten as
Xh' YH
X Y

Engineering Analysis Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal
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Once again, the two sides involve unrelated variables, so both are

constant: o yi
— =B=——+A
X v '
It we let C = A — B these equations can be rewritten as
X" — BX =0,
Y”" - CY = 0.

Secondly

The first boundary condition is
0=u(0,y,t) =XO0)Y(y)T(t),0<y <b, t>0.

Since we want nontrivial solutions only, we can cancel Y and T,
yielding
X(0) = 0.

When we perform similar computations with the other three
boundary conditions we also get

X(a) =0,
Y(0) = Y(b) =0.

There are no boundary conditions on T.

28
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Fortunately, we have already solved the two boundary value
problems for X and Y. The nontrivial solutions are

mim

Xm(x) = sin pimx, L = , m=1,2,3,...
a
nm
Ya(y) =sinv,y, Uy = = n=12273,...
with separation constants B = —p2 and C = —1/2.

Recall that 7 must satisfy
T — 2AT =0

with A= B+ C = — (2, + v2) < 0. It follows that for any choice
of m and n the general solution for T is

Tmn(t) = Bmncos Amnt + B,,,,sin Amnt,

2 2
m n
/\mn —= C\/ern—kl/% — CT ?—F?

These are the characteristic frequencies of the membrane.

where

Assembling our results, we find that for any pair m,n > 1 we have
the normal mode

Umn(X, ¥, t) = Xmn(x)Yn(y) Tmn(t)

= sin pmxsin vy (Bmn €os Amnt + B, sin Apnt)

where

mrr nw
Hm = — e 5 Amn = cy\/ p2, + 2.
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Remarks:

@ Note that the normal modes:

o oscillate spatially with frequency i, in the x-direction,
e oscillate spatially with frequency 1, in the y-direction,

o oscillate in time with frequency A,,,.

@ While 1, and v, are simply multiples of w/a and 7 /b,
respectively,

Amn is not a multiple of any basic frequency.

u(x,y,t) = Z Z sin pumx sin v,y (Bmp cos Appt + B, sin Ap,t).

n=1 m=1

Finally, we must determine the values of the coefficients B,,, and
B}, that are required so that our solution also satisfies the initial
conditions (3). The first of these is

 — . mm . nmw
f(x,y) =u(x,y,0) = Z Z Bmn sin x sin —=

a
n=1 m=1
and the second is
m nm

g(x,y) = u(x,y,0) = Z Z Amn By, Sin . x sin oY

n=1 m=1

These are examples of double Fourier series.
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Using the usual argument, it follows that assuming we can write

oC oC
. onT
:E E mnsm xsm—
a b

n=1 m=1

/ / in (4)

Suppose that f(x,y) and g(x.y) are C? functions on the rectangle
[0, a] x [0, b]. The solution to the wave equation (1) with
boundary conditions (2) and initial conditions (3) is given by

>0

u(x,y,t) = Z Z Sin pemx sin vpy (Bmp €os Amnt + Bry,, sin Apnt)

n=1 m=1

mit nm 5 5
Mm — arVn: b:/\mn:C Mo + V5,

and the coefficients B,,, and B}, are given by

f / (x,y)sin 7 e sin 2 —ydydx
a b

where

and

Bm

n = abx\mn/ / (x,y)sin szm ?ydydx.
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Second-Order Linear Differential Equations

A second-order linear differential equation has the form

d*y

m P

+ Q(x) ay + R(x)y = G(x)
dx

where P, O, R, and G are continuous functions. We saw in Section 7.1 that equations of
this type arise in the study of the motion of a spring. In Additional Topics: Applications of
Second-Order Differential Equations we will further pursue this application as well as the
application to electric circuits.

In this section we study the case where G(x) = 0, for all x, in Equation 1. Such equa-
tions are called homogeneous linear equations. Thus, the form of a second-order linear
homogeneous differential equation is

d’y dy
=4
e oWy

— 4+ R(x)y=10
x

2] P(x)

If G(x) # 0 for some x. Equation 1 is nonhomogeneous and is discussed in Additional
Topics: Nonhomogeneous Linear Equations.

Two basic facts enable us to solve homogeneous linear equations. The first of these says
that if we know two solutions v, and v, of such an equation, then the linear combination
v = €1y + 2y is also a solution.

[3] Theorem If y,(x) and y.(x) are both solutions of the linear homogeneous equa-
tion (2) and ¢, and ¢, are any constants, then the function

y(x) = enilx) + cayalx)

1s also a solution of Equation 2.
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Proof Since y; and y; are solutions of Equation 2, we have
P(x)y" + Q(x)yi + R(x)y, =0
and P(x)yy + Q(x)y: + R(x)y, =0
Therefore. using the basic rules for differentiation, we have
P(x)y" + Q(x)y" + R(x)y
= P(x)(civi + cavd)” + Qx)cvi + cayn)’ + R(x)eiyr + cava)
= P(x)(eiyl’ + ey7) + Q(x)ewy! + e2y2) + R(x) ey + cay2)

= ¢[P(x)y] + Qx)y] + R(x)y] + co[P(x)y} + Qx)y: + R(x)y.]
- C']{D) + Cg(ﬂ} =10

Thus, y = ¢1y1 + ¢2y2 1s a solution of Equation 2. Fr

The other fact we need is given by the following theorem. which is proved in more
advanced courses. It says that the general solution is a linear combination of two linearly
independent solutions y, and v,. This means that neither vy, nor y. is a constant multiple
of the other. For instance, the functions f(x) = x* and g(x) = 5x° are linearly dependent,
but f(x) = ¢* and g(x) = xe" are linearly independent.

[4] Theorem If y, and vy, are linearly independent solutions of Equation 2, and P(x)
is never 0, then the general solution is given by

y(x) = ciyilx) + exya(x)

where ¢, and ¢; are arbitrary constants.

Theorem 4 is very useful because it says that if we know fwe particular linearly inde-
pendent solutions, then we know every solution.

In general. it is not easy to discover particular solutions to a second-order linear equa-
tion. But it is always possible to do so if the coefficient functions P, (0, and R are constant
functions, that is, if the differential equation has the form

ay" + by' +ecy=10

33
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where ¢, b, and ¢ are constants and a = (.

It’s not hard to think of some likely candidates for particular solutions of Equation 5 if
we state the equation verbally. We are looking for a function y such that a constant times
its second derivative y" plus another constant times y' plus a third constant times y is equal
to 0. We know that the exponential function y = ™ (where r is a constant) has the prop-
erty that its derivative is a constant multiple of itself: y' = re™. Furthermore, y" = r'e™.
If we substitute these expressions into Equation 5, we see that y = ¢™ is a solution if

7
are™ + bre™ + ce™ =10

or (ar® + br + c)e™ =10
But ¢™ is never 0. Thus, y = ¢™ is a solution of Equation 3 if r is a root of the equation

(6] ar>+ br+c=0

Equation 6 is called the auxiliary equation (or characteristic equation) of the differen-
tial equation ay” + by’ + cy = 0. Notice that it is an algebraic equation that is obtained
from the differential equation by replacing ¥" by r*, y" by r, and y by 1.

Sometimes the roots ry; and r; of the auxiliary equation can be found by factoring. In
other cases they are found by using the quadratic formula:

—b + 2 — dac —b — /b* — dac
e 2a = 2a

We distinguish three cases according to the sign of the discriminant b* — 4ac.

(ASE1 0 b* — d4ac = 0

In this case the roots r, and r- of the auxiliary equation are real and distinct, so y, = ™"
and y; = ¢"™" are two linearly independent solutions of Equation 3. (Note that ¢™* is not a
constant multiple of ¢™*.) Therefore, by Theorem 4, we have the following fact.

If the roots ry and r; of the auxiliary equation ar® + br + ¢ = (0 are real and
unequal, then the general solution of ay” + by + cy = 0is

y=cie™ + e
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EXAMPLE 1 Solve the equation y" + y" — 6y = 0.
SOLUTION The auxiliary equation is

rP+r—6=(-2r+3)=0

whose roots are r = 2, —3. Therefore, by (8) the general solution of the given differen-
tial equation is

Z -
y=cie" + c2e

We could verify that this is indeed a solution by differentiating and substituting into the
differential equation. ER

EXAMPLE 2 Solve 322 + 9 _ ¢
dx- dx .

SOLUTION To solve the auxiliary equation 3r* + r — 1 = 0 we use the quadratic
formula:

_—1=413
6

F

Since the roots are real and distinct, the general solution 1s

y = clE{—H-.-'u‘_leﬁ + clﬁi—]—-;'l_“r_lx,.l’ﬁ Bl
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CASEN o b2 — dac =0
In this case ry = r2; that is, the roots of the auxiliary equation are real and equal. Let’s
denote by r the common value of r| and r,. Then, from Equations 7, we have

b
[9] r=-o- o 2ar + b=10

We know that yi = €™ is one solution of Equation 5. We now verify that v» = xe™ 1s also
a solution:

avi + byt + cv: = al2re™ + r’xe™) + ble™ + rxe™) + cxe™
= (2ar + ble™ + (ar’ + br + c)xe™

=0{e™) + 0{xe™) =10

The first term 1s 0 by Equations 9; the second term is 0 because r is a root of the auxiliary
equation. Since y; = €™ and yv; = xe™ are linearly independent solutions, Theorem 4 pro-
vides us with the general solution.

If the auxiliary equation ar’ + br + ¢ = 0 has only one real root r, then the
general solution of av” + by' + cy = 01s

vy=rce™ + caxe™

EXAMPLE 3 Solve the equation 4y" + 12y + 9y = 0.
SOLUTION The auxiliary equation 4r° + 12r + 9 = 0 can be factored as

(2r + 37 =
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50 the only root is r = —%. By (10} the ceneral solution is
y = W 4 e (] ]

CSEM © B* — dac < 0
In this case the roois ry, and r; of the auxiliary equation are complex numbers. (See Appen-
dix I for information about complex numbers.) We can write

n=um+ i3 nR=o—IiB

where o« and 8 are real numbers. [In fact, &« = —5b/(2a), @ = +/4ac — b*/(2a).] Then,
uzing Euler's equation

EXAMPLE 4 Solve the eguation v — &y" + [3y =10,

g __ F] - .
g” =cos# + isind SOLUTION The auxiliary equation is r* — 6r + 13 = 0. By the quadratic formula, the
rools are
from Appendix I, we write the solution of the differential equation as 6+x,36—-52 6=x.,-16 S
= = = - i
2 2
_ I I __ (= +ihr  pla—ifix
y=0Ge" + Ge™ = e + Cee By (11) the general solution of the differential equation is

= ;e Ycos Bx + isin Bx) + Ce*%cos Bx — isin Bx)
= ¢*(C, + C2) cos Bx + i(Cy — C:) sin Bx]
= ™%, cos Bx + a2 5in Bx)
where c; = Oy + Ci, 02 = (T — ). This gives all solutions (real or complex) of the dif-

ferential equation. The solutions are real when the constants ¢, and ¢, are real. We sum-
marize the discussion as follows.

[11] If the roots of the auxiliary equation ar® + br + ¢ = 0 are the complex num-
bers n = a + I8, r: = o — i, then the general solution of av™ + bv' + cv =0
is

¥ = &, cos Bx + cx5in Bx)

Engineering Analysis
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EXAMPLE 5 Solve the initial-value problem

YV +y —by=10 yio) =1 ¥ =0

SOLUTION From Example 1 we know that the peneral solotion of the differential equa-
tiion is

vix) = g™ + e ™
Diifferentiating this solution. we get
yi(r) = g™ — Ine ™
To satisfy the initial conditions we require that
LH )= +o=1
LE] ¥0) =20 — 3 =0
From (13) we have o = 7o) and so {12) gives
c1-l-§r:|=] c|=§ c:=§
Thus, the required solution of the initial-value problem is
v=1e +qeE rFr
EXAMPLE & Solve the initial-value problem
YV t+y=10 y(0) =12 ¥y =3

SOLUMON The auxiliary equation is r* + 1 = 0, or r* = — 1, whose roots are *i. Thus
a=0,g= 1, and since e™ = |, the general solution is

¥ix) = cicos x + casin x
Since ¥i(xl = —gysinx + cpoos x
the initial conditions become
¥i)=o=12 YVill=c=3
Therefore, the solution of the initial-value problem is
¥ix) = 2cosx + 3sinx rFr
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