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Differential Equation 

Differential Equation: An equation containing the derivatives of one or more dependent 

variables, with respect to one or more independent variables, is said to be a differential equation 

(DE). 

Classification of differential equations 

Ordinary Differential Equation (ODE): If an equation contains only ordinary derivatives of 

one or more dependent variables w.r.t. a single independent variable, it is said to be an ODE.  

Example:  

Partial Differential Equation (PDE): An equation involving the partial derivatives of one or 

more dependent variables w.r.t. two or more independent variable is called a PDE 

Example:  

The order of a partial differential equation is the order of the highest derivative involved. 

A solution (or a particular solution) to a partial differential equation is a function that solves the 

equation or, in other words, turns it into an identity when substituted into the equation.  
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There are 6 basic classifications: 

(1) Order of PDE 

(2) Number of independent variables 

(3) Linearity 

(4) Homogeneity 

(5) Types of coefficients 

(6) Canonical forms for 2nd order PDEs 

(1) Order of PDEs 

The order of a PDE is the order of the highest partial derivative in the equation. 

xsin
x

u
u

t

u
3

3










2

2

x

u

t

u










(2nd order) 

x

u

t

u










(1st order) 
(3rd order) 

Classification of Partial Differential Equations (PDEs) 

Examples: 

(2) Number of Independent Variables 

Examples: 
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(2 variables: x and t)  (3 variables: r, , and t) 
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PDEs can be linear or non-linear.  A PDE is linear if the dependent variable and all its 

derivatives appear in a linear fashion (i.e. they are not multiplied together or squared 

for example. 

(3) Linearity 

Examples: 

 

(Linear)  
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(4) Homogeneity 

(Non-homogeneous) 

(Homogeneous) 

(5) Types of Coefficients 

If the coefficients in front of each term involving the dependent variable and its derivatives are 

independent of the variables (dependent or independent), then that PDE is one with constant 

coefficients. 

(Variable coefficients) 

(C constant; constant coefficients) 
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A PDE is called homogenous if after writing the terms in order, the right hand side is zero. 

Examples: 

(Non-homogeneous) 

(Homogeneous) 

(Homogenous) 
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(6) Canonical forms for 2nd order PDEs (Linear) 
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where A, B, C, D, E, F, and G are either real constants or real-valued functions of 

x and/or y. 

(Standard Form) 

PDE is Elliptic  0AC4B
2

PDE is Hyperbolic  0AC4B
2

PDE is Parabolic  0AC4B
2

Parabolic PDE  solution “propagates” or diffuses 

Hyperbolic PDE  solution propagates as a wave 

Elliptic PDE   equilibrium 

This terminology of elliptic, parabolic, and hyperbolic, reflect the analogy between the 

standard form for the linear, 2nd order PDE and conic sections encountered in analytical 

geometry: 

0FEyDxCyBxyAx
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(a) Here, A=1, B=0, C=2, D=E=F=G=0   

B2-4AC = 0 - 4(1)(2) = -8 < 0  this equation is elliptic. 

(b) 

Here, A=1, B=0, C=-2, D=E=F=G=0  B2-4AC = 0 - 4(1)(-2) = 8 > 0  this equation is 

hyperbolic. 

 

(c)

  

Examples 

Here, A=1, B=0, E=-2, C=D=F=G=0  B2-4AC = 0 - 4(1)(0) = 0  this equation is 

parabolic. 
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Separation of variables is a technique for solving some partial deferential equations. 

Assume the function you're looking for, u(x; t), can be written as a product of a function of x only 

and a function of t only: 

𝑢 𝑥;  𝑡 =  𝑋 𝑥  𝑇(𝑡) 

Then it is easy to take derivatives: 

𝑢𝑡 =  𝑋(𝑥)𝑇′
 (𝑡)                 𝑢𝑡𝑡 =  𝑋(𝑥)𝑇′′(𝑡) 

Plug them in to the partial deferential equation. 

( (function of t only) = 𝜆 

which you can solve separately for X and T. 

Solution of Partial Differential Equations 

Separation of Variable Solutions 

Try to separate the variables: (function of x only) = (function of t only) 

𝑢𝑥 =  𝑋  𝑥 𝑇 𝑡                    𝑢𝑥𝑥 =  𝑋′′
 (𝑥)𝑇(𝑡) 

If you can, then both sides must be constant: (function of x only) = 𝜆 = (function of t only) 

Reorganize these into two ordinary deferential equations 

function of x only) = 𝜆 
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Example 1 

Use separation of variables to convert the following partial deferential equation into 

two ordinary deferential equations: 

𝑢𝑥𝑥 +  𝑥 𝑢𝑡 =  0 

𝑢(𝑥;  𝑡)  =  𝑋(𝑥)𝑇(𝑡) 

Plug in to the PDE:         𝑋′′
 𝑥  𝑇 𝑡 +  𝑥 𝑋(𝑥)𝑇′

 𝑡 =  0 

𝑇′
 𝑡 −  𝜆𝑇(𝑡)  =  0 

𝑢𝑡 =  𝑋(𝑥) 𝑇′
 (𝑡) 

𝑢𝑥𝑥 =  𝑋′′
 𝑥  𝑇(𝑡) 

𝑢𝑥 =  𝑋′
 𝑥  𝑇(𝑡) 

− 
         𝑋′′ 𝑥

𝑥 𝑋 𝑥
=

 𝑇′
 𝑡  

𝑇 𝑡  
= 𝜆 

       
  𝑋

′′
 𝑥 +  𝜆 𝑥 𝑋 𝑥 =  0 
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Example 2 
Use separation of variables to convert the following partial differential equation into two 

ordinary deferential equations: 

𝑢𝑡𝑡 +  𝑢𝑥𝑡 +  𝑢𝑥 =  0 

 
 
 

𝑇′′
 𝑡 − 𝜆 𝑇′

 (𝑡)- 𝜆𝑇(𝑡)  =  0 

𝑢(𝑥;  𝑡)  =  𝑋(𝑥)𝑇(𝑡) 

𝑢𝑥 = 𝑋′
 𝑥  𝑇(𝑡) 

𝑢𝑡𝑡 =  𝑋 𝑥 𝑇′′
 𝑥  

𝑢𝑥𝑡 = 𝑋′
 𝑥 𝑇′

 (𝑡) 

𝑃𝑙𝑢𝑔 𝑖𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑃𝐷𝐸:  𝑋 𝑥 𝑇′′
 𝑥 + 𝑋′

 𝑥 𝑇′
 (𝑡) + 𝑋′

 𝑥 𝑇(𝑡)  =  0 

𝑋 𝑥 𝑇′′
 𝑥 + 𝑋′

 𝑥 [𝑇′
 (𝑡) + 𝑇(𝑡)]  =  0 

𝑋′
 𝑥 [𝑇′

 (𝑡) + 𝑇(𝑡)] = −𝑋 𝑥 𝑇′′
 𝑥  

𝑋′ (𝑥) +   𝜆 𝑋(𝑥)  =  0 

− 
         𝑋′ 𝑥

 𝑋 𝑥
=

 𝑇′′
 𝑡  

𝑇′
 𝑡  +  𝑇 𝑡  

= 𝜆 
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Example 3 Solve by the separation of variables 3𝑢𝑥+𝑢𝑦 =  0 , 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑢 𝑥, 𝑜 = 4𝑒−𝑥 

Solution given 3
𝜕𝑢

𝜕𝑥
+ 2 

𝜕𝑢

𝜕𝑦
=  0 ,   

𝑢 𝑥; 𝑦 =  𝑋 𝑌   (1) 𝑤ℎ𝑒𝑟𝑒 𝑢 𝑥;  𝑡 =  𝑋 𝑥 = 𝑋   𝑎𝑛𝑑 𝑌 𝑦 = 𝑌 

3
𝜕

𝜕𝑥
𝑋𝑌 + 2 

𝜕

𝜕𝑦
𝑋𝑌 =  0     ⟹

3

𝑋

𝑑𝑋

𝑑𝑥
= −

2

𝑌
 
𝑑𝑌

𝑑𝑦
 

⟹
3

𝑋

𝑑𝑋

𝑑𝑥
= k    ⟹    3 

𝑑𝑋

𝑋
= 𝑘𝑑𝑥   

⟹  𝐿𝑛 𝑋 =  
𝑘𝑥

3
+ 𝑐1 

𝑋 =  𝑒
𝑘𝑥
3 +𝑐1 

−
2

𝑌
 
𝑑𝑌

𝑑𝑦
=  𝑘 ⟹  

𝑑𝑌

𝑌
= − 

𝑘

2
𝑑𝑦 𝐿𝑛 𝑌 = − 

𝑘𝑦

2
+ 𝑐2 𝑌 =  𝑒

−𝑘𝑦
2 +𝑐2 

Substitute X and Y in (1)   

𝑈 =  𝑒𝑘 (
𝑥
3  − 

𝑦
2)+𝑐1+ 𝑐2 

𝑎𝑙𝑠𝑜 𝑢 𝑥, 𝑜 = 4𝑒−𝑥 

4𝑒−𝑥 = 𝑒𝑘 
𝑥

3
  +𝑐1+ 𝑐2 =  𝐴𝑒𝑘 

𝑥

3
  
 

𝑠𝑜 𝐴 = 4    and k = - 3 𝑈 =  4 𝑒−3 (
𝑥
3  − 

𝑦
2)

 ⟹ 
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Use separation of variables to convert the heat equation below into two ordinary differential 

equations. (For later purposes, use −𝜆 instead of 𝜆 for the separation constant.) 

Plug in to the PDE:  𝑢𝑡 = 𝛼2 𝑢𝑥𝑥 

𝑢𝑡 =  𝛼2  𝑢𝑥𝑥 

𝑢(𝑥;  𝑡)  =  𝑋(𝑥)𝑇(𝑡) 

𝑢𝑥 = 𝑋′
 𝑥  𝑇(𝑡) 

𝑢𝑥𝑥 = 𝑋′′
 𝑥  𝑇(𝑡) 

𝑢𝑡 = 𝑋 𝑥 𝑇′
 (𝑡) 

𝑋′ (𝑥) +   𝜆 𝑋(𝑥)  =  0 

         𝑋′′ 𝑥

 𝑋 𝑥
=

 𝑇′
 𝑡  

𝛼2 𝑇 𝑡  
= −𝜆 

 𝑇′
 𝑡  

𝛼2 𝑇 𝑡  
= −𝜆 

         𝑋′′ 𝑥

 𝑋 𝑥
= −𝜆 

𝑋 𝑥 𝑇′
 𝑡 = 𝛼2 𝑋′′

 𝑥  𝑇(𝑡) 

Example 4 

 𝑇′
 𝑡 + 𝜆𝛼2 𝑇 𝑡  = 0 
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Consider 1D heat equation of the form 
𝜕 𝑢

𝜕𝑡
= 𝛼2 𝜕2𝑢

𝜕𝑥2. This function is defined on the spatial 

domain 0 ≤  𝑥  ≤ 𝐿 and 𝑡 >  0. BCs: 𝑢(0, 𝑡)  =  𝑢(𝐿, 𝑡)  =  0, 𝐼𝐶:  𝑢(𝑥, 0)  = 𝑓(𝑥). Solve the 

equation using separation of variable  

𝑢(𝑥;  𝑡)  =  𝑋(𝑥)𝑇(𝑡) 

𝑢𝑥 = 𝑋′
 𝑥  𝑇(𝑡) 𝑢𝑥𝑥 = 𝑋′′

 𝑥  𝑇(𝑡) 

𝑢𝑡 = 𝑋 𝑥    𝑇′
 (𝑡) 

Now, substituting these expression into 𝑋 𝑥 𝑇′
 𝑡 = 𝛼2 𝑋′′

 𝑥  𝑇(𝑡) 

𝜕 𝑢

𝜕𝑡
= 𝛼2

𝜕2𝑢

𝜕𝑥2 . 

𝑋′′ 𝑥 −   𝑘 𝑋(𝑥)  =  0 

  𝑋′′ 𝑥

 𝑋 𝑥
=

 𝑇′
 𝑡  

𝛼2𝑇 𝑡  
= 𝑘 

 𝑇′
 𝑡  

𝛼2𝑇 𝑡  
= 𝑘 

         𝑋′′ 𝑥

 𝑋 𝑥
= 𝑘 

 𝑇′
 𝑡 − 𝑘𝛼2 𝑇 𝑡  = 0 

1D Heat equation 

 𝑢𝑡 = 𝛼2 𝑢𝑥𝑥 

𝜕 𝑢

𝜕𝑡
= 𝛼2

𝜕2𝑢

𝜕𝑥2 . 

Separating variables, we obtain 
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. There are three distinct cases affecting general solution. 

𝑘 < 0 (Negative coefficient) 𝑘 = 0 (Null coefficient) 𝑘 > 0 (positive coefficient) 

It is convenient to set 𝑘 = −𝜆2  for 𝑘 < 0  and 𝑘 = 𝜆2  for 𝑘 > 0 

Case 1 )  What if K = 0 ? Then it follows that 

 𝑇′
 𝑡  = 0 𝑋′′ (𝑥) =  0 

The general solutions are : 

thus 𝑢 =  𝑋𝑇 = 𝐴1 (𝐵1 𝑥 + 𝐶1) 𝑇 (𝑡) =  𝐴1    𝑎𝑛𝑑  𝑋 𝑥  =  𝐵1 𝑥 +  𝐶1 

Applying BC which 𝑢 0, 𝑡 =  𝑢 𝐿, 𝑡 =  0 = X 0, 𝑡 = 𝑋 𝐿, 𝑡 = 0  yields 

We get that 𝐵1 = 𝐶1 = 0 This lead to 𝑢 = 0  This trivial solution  we reject 𝑘 = −𝜆2= 0 

C𝒂𝒔𝒆 𝟐) 𝑖𝑓 𝑘 > 0 = 𝜆2     𝑡ℎ𝑒𝑛    𝑘 = 𝜆2   and thus 

𝑋′′ 𝑥 − 𝜆2𝑋(𝑥)  =  0  𝑇′
 𝑡 − 𝜆2 𝛼2 𝑇 𝑡  = 0 

which yields the following parametrized general solutions 

𝑇 𝑡 = 𝐴2 𝑒𝜆2𝛼2𝑡 𝑋(𝑥)  =  𝐵2 𝑒𝜆𝑥  +  𝐶2𝑒−𝜆𝑥 

thus 𝑢 𝑥;  𝑡 =  𝑋 𝑥   𝑇(𝑡) =A2  𝑒𝛼2𝜆2𝑡 (B2 𝑒𝜆𝑥  + 𝐶2𝑒−𝜆𝑥)  

𝑋′′ 𝑥 −   𝑘 𝑋(𝑥)  =  0 

𝑋′′ 𝑥 −   𝑘 𝑋(𝑥)  =  0 

𝑋′′ 𝑥 −   𝑘 𝑋(𝑥)  =  0 

 𝑇′
 𝑡 − 𝑘𝛼2 𝑇 𝑡  = 0 
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 Thus  C2 = 0  

Case 3 ) if  𝑘 < 0  = −𝜆2 

𝑋′′ (𝑥) + 𝜆2𝑋(𝑥)  =  0  𝑇′
 𝑡 + 𝜆2𝛼2 𝑇 𝑡  = 0 

𝑇(𝑡) = 𝐴3 𝑒−𝜆2 𝛼2
𝑡 𝑋(𝑥)  =  𝐵3 cos (𝜆𝑥)  +  𝐶3 sin ((𝜆𝑥)  

𝑢(𝑥;  𝑡)  =  𝑋(𝑥)𝑇(𝑡) =𝐴3  𝑒− 𝛼2𝜆2𝑡 (𝐵3 cos  𝜆𝑥 + 𝐶3 sin 𝜆𝑥 )  

X(0) =  0 = 𝐵3 1  + 0         this lead B3 = 0 

The general solution 

thus 

To determine 𝐵2 and 𝐶2, we apply the BC X(0) = 0, X(L) = 0 to have 

X(0) = B2 + C2 = 0, 

𝑋(𝐿)  =  𝐵 𝑒𝜆𝐿  +  𝐶𝑒−𝜆𝐿 = 0 

C2 = - B2 

𝐵2 (𝑒𝜆𝐿 − 𝑒−𝜆𝐿) = 0 

this trivial solution  we reject k > 0 

𝐵2 (𝑒2𝜆𝐿 −1) = 0 B2 = 0  

as λ > 0. 

this implies u(x, t) = 0 

To determine 𝐵3 and 𝐶3, we apply the BC X(0) = 0, X(L) = 0 to have 

𝑋′′ 𝑥 −   𝑘 𝑋(𝑥)  =  0 

Applying BC which 𝑢 0, 𝑡 =  𝑢 𝐿, 𝑡 =  0 = X 0, 𝑡 = 𝑋 𝐿, 𝑡 = 0  yields 

𝑋(𝑥)  =  𝐵2 𝑒𝜆𝑥  +  𝐶2𝑒−𝜆𝑥 

𝑋′′ 𝑥 − 𝜆2𝑋(𝑥)  =  0 
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As B3 = 0 the equation reduces to   𝐶3 sin ( 𝐿𝜆  = 0  

for this case    C3 = 0 or       sin(λL) =0  

we reject C3 = 0 because of trivial solution.  

so sin (λL) = 0 ⟹ λL = n𝜋            𝑜𝑟               λ = 
n𝜋  

𝐿
 

𝑋𝑛 (𝑥)= C𝑛 sin 
𝑛𝜋

𝐿
𝑥  𝑇(𝑡)= a𝑛 𝑒−

𝛼2 𝑛
2𝜋2

𝐿2 𝑡 

Finally recall initial condition 𝑢(𝑥, 0)  = 𝑓(𝑥). We simply force our solution to agree 

with this  

𝑢(𝑥; 0)  =  c𝑛 sin 
𝑛𝜋

𝐿
𝑥∞

𝑛=1   

which is called a Fourier sine series (FSS) with 𝒄𝒏 ′𝒔 are given by the formula 

 𝒄𝒏 =
𝟐

𝒍
 𝑭 𝒙 𝒔𝒊𝒏

𝒏𝝅𝒙

𝒍
𝒅𝒙

𝒍

𝟎
 

X(L) = 𝐵3 cos (𝜆𝐿)  + 𝐶3 sin 𝜆𝐿  = 0  

𝑢(𝑥;  𝑡)  𝑢(𝑥;  𝑡)∞
𝑛=1  =  c𝑛 𝑒−

𝛼2 𝑛
2𝜋2

𝐿2 𝑡   sin 
𝑛 𝜋

𝐿
𝑥∞

𝑛=1  

𝑋 𝑥 =  𝐵3 cos  (𝜆𝑥)  +  𝐶3 sin  (𝜆𝑥)  
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Solution of partial differential equation for vibration of a string: 

Consider a wave on a guitar string. In the simplest case 
𝜕2𝑢

𝜕𝑡2 .=  𝑎2 𝜕2𝑢

𝜕𝑥2. The length of the 

string  = L, and it is fixed at both ends at x = 0 and x = L, and as a result we know 

0 ≤  𝑥  ≤ 𝐿 and 𝑡 >  0. BCs: 𝑢(0, 𝑡)  =  𝑢(𝐿, 𝑡)  =  0, 𝐼𝐶:  𝑢 𝑥, 0 = 𝑓 𝑥 𝑎𝑛𝑑 𝑢𝑡 𝑥, 0 =
0). Solve the equation using separation of variable  

 

Vibration after t = 0+ 

x

X = 0

X

L

Shape @ t = 0: f(x)
Instantaneous

Displacement 

@ x and time t: u(x,t)
Initial shape 

The deflection of the string at x-distance from the end at x = 0 at time t into the vibration 

can be obtained by solving the following partial differential equation: 

   
2

2
2

2

2 ,,

x

txu
a

t

txu










m

P
a in which 

with P = tension in the string, and m = mass density of the  

string per unit length 

Wave equation 
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Solution   

𝑢𝑥𝑥 = 𝑋′′
 𝑥  𝑇(𝑡) 𝑢𝑡𝑡 = 𝑋 𝑥    𝑇′′

 (𝑡) 

𝑢(𝑥, 𝑡)  =  𝑋(𝑥) 𝑇(𝑡) 

Now, substituting these expression into 𝑋 𝑥    𝑇′′
 (𝑡) =  𝑎2 𝑋′′

 𝑥  𝑇(𝑡) 

𝑋′′ 𝑥 −   𝑘 𝑋(𝑥)  =  0 

  𝑋′′ 𝑥

 𝑋 𝑥
=

 𝑇′′
 𝑡  

𝑎2𝑇 𝑡  
= 𝑘 

         𝑋′′ 𝑥

 𝑋 𝑥
= 𝑘 

𝜕2𝑢

𝜕𝑡2 .=  𝑎2 𝜕2𝑢

𝜕𝑥2.  

 𝑇′′
 𝑡  

𝑎2𝑇 𝑡  
= 𝑘  𝑇′′

 𝑡  − 𝑘𝑎2𝑇 𝑡  = 0 

Looking at the boundary conditions, we conclude if  𝑘 < 0  = −𝜆2 for case 3 

𝑋′′ (𝑥) + 𝜆2𝑋(𝑥)  =  0 

𝑋(𝑥)  = 𝐴 cos (𝜆𝑥)  + 𝐵 sin ((𝜆𝑥)  

To determine 𝐵3 and 𝐶3, we apply the BC X(0) = 0, X(L) = 0 to have 

and thus we get the general solution  for X(x) and T(t) of 

  𝑋′′ 𝑥

 𝑋 𝑥
=

 𝑇′′
 𝑡  

𝛼2𝑇 𝑡  
= −𝜆2 

T′′ (𝑡) +  𝑎2𝜆2𝑇(𝑡)  =  0 

𝑇(𝑡)  = 𝐶 cos (𝜆𝑎𝑡)  + 𝐷 sin ((𝜆𝑎𝑡)  
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The B.C and IC are 

T(0) = f(x)  0
)(

0


tdt

tdTX(0) = 0 X(L) = 0 

where A, B, C, and D are arbitrary constants need to be determined from initial and boundary conditions 

given in above equation. 

𝑢(𝑥, 𝑡)  =  𝑋(𝑥)𝑇(𝑡)  Because we have knew that 

𝑡ℎ𝑢𝑠 𝑢(𝑥;  𝑡) = [𝐴 cos  𝜆𝑥 + 𝐵 sin 𝜆𝑥 ] [𝐶 cos (𝜆𝑎𝑡)  + 𝐷 sin ( 𝜆𝑎𝑡 ]  

𝑋(𝑥)  = 𝐴 cos (𝜆𝑥)  + 𝐵 sin ((𝜆𝑥)  𝑇(𝑡)  = 𝐶 cos (𝜆𝑎𝑡)  + 𝐷 sin ((𝜆𝑎𝑡)  

𝑋(𝑥)  = 𝐴 cos (𝜆𝑥)  + 𝐵 sin ((𝜆𝑥)  𝑇(𝑇)  = 𝐶 cos (𝜆𝑎𝑡)  + 𝐷 sin ((𝜆𝑎𝑡)  

From B.C     X(0) = 0: 

Determination of arbitrary constants: 

•Let us start with the solution: 𝑋(𝑥)  = 𝐴 cos (𝜆𝑥)  + 𝐵 sin ((𝜆𝑥)  

A cos (𝜆*0)  +  B sin (𝜆 * 0)  =  0, which means that A = 0 

Now, from B.C): X(L) = 0: X(L)  =  0  =  B Sin(𝜆L) 

At this point, 𝐵 = 0, or Sin (𝜆 L) = 0 from the above relationship. A careful look at these 

choices will conclude that B ≠ 0, which leads to: 

                                                             

Sin (𝜆L) = 0 λL = n𝜋            𝑜𝑟 λ𝑛 = 
n𝜋  

𝐿
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Now, if we substitute the solution of X(x) and λ𝑛 = 
n𝜋  

𝐿
  in u (t, x),  

we get: 

(n = 1, 2, 3,,……..) 

By combining constants B, C and D in the above expression, we obtain u(x,t) to : 

(n = 1, 2, 3,,……..) 

We are now ready to use the two initial conditions to determine constants Cn and Dn in the above expression: 

Let us first look at the condition : 0
),(

0






tt

txu

But since  0
n

Sin x
L


 Dn = 0 

𝑢(𝑥, 𝑡) = [𝐴 cos  𝜆𝑥 + 𝐵 sin 𝜆𝑥 ] [𝐶 cos (𝜆𝛼𝑡)  + 𝐷 sin ( 𝜆𝛼𝑡 ]  

𝑢(𝑥, 𝑡) = 𝐵 sin  
n𝜋  

𝐿
𝑥  [𝐶 cos (

n𝜋  
𝐿

𝑎𝑡)  + 𝐷 sin 
n𝜋  

𝐿
𝑎𝑡 ]  

𝑢(𝑥, 𝑡) = sin  
n 𝜋  

𝐿
𝑥  [𝐶𝑛cos ( 

n𝜋  
𝐿

𝑎𝑡)  + 𝐷𝑛sin  
n 𝜋  

𝐿
𝑎𝑡 ]  

𝜕𝑢(𝑥,𝑡)

𝜕 𝑡 𝑡=0
= 0 =

n a 𝜋  
𝐿

sin  
n 𝜋  

𝐿
𝑥 [ −𝐶𝑛𝑠𝑖𝑛 ( 

n  𝜋  
𝐿

𝑎𝑡)  + 𝐷𝑛𝑐𝑜𝑠  
n 𝜋  

𝐿
𝑎𝑡 ]

𝑡=0
 

𝑢(𝑥, 𝑡) =  𝐶𝑛 sin  
n 𝜋  

𝐿
𝑥  cos ( 

n𝜋  
𝐿

𝑎𝑡)  ∞
𝑛=1  

In order to determine constant coefficients Cn in previous equation : 

The last remaining condition of u(x , o) = f(x) will be used for this purpose, in which f(x) is the initial 

shape of the string. 
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Thus, by letting 𝒖(𝒙, 𝟎)  =  𝒇(𝒙), we will have: 

The coefficient Cn of the above Fourier series is: 

The complete solution of the amplitude of vibrating string 𝑢(𝑥, 𝑡) becomes: 

0
1

2
( , ) ( )

L

n

n x n at n x
u x t f x Sin dx Cos Sin

L L L L

  



 
  

 
 

𝑢(𝑥, 0) =  𝐶𝑛 sin  
n 𝜋  

𝐿
𝑥 = 𝑓(𝑥)∞

𝑛=1  

𝑓(𝑥)=  𝐶𝑛 sin  
n 𝜋  

𝐿
𝑥∞

𝑛=1  which is called a Fourier sine series (FSS) 

 𝑪𝒏 =
𝟐

𝒍
 𝑭 𝒙 𝒔𝒊𝒏

𝒏𝝅𝒙

𝒍
𝒅𝒙

𝒍

𝟎
 

𝑢(𝑥, 𝑡) =  𝐶𝑛 sin  
n 𝜋  

𝐿
𝑥  cos ( 

n𝜋  
𝐿

𝑎𝑡)  ∞
𝑛=1  



Note that the equation has no dependence on time, just on the spatial variables x, y. This 

means that Laplace’s Equation describes steady state situations such as: 

• steady state temperature distributions 

• steady state stress distributions 

• steady state flows, for example in a cylinder, around a corner, 
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Laplace’s Equation 

𝜕2𝑢

𝜕𝑥2 +  
𝜕2𝑢

𝜕𝑦2 =  0 

Example 

Solve using variable separation, the temperature equilibrium distribution in rectangular plate. 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 =  0, 0 <  𝑥 < 𝐿,      0 <  𝑦 < 𝐻, 

𝑢 𝑥, 0 = 𝑓(𝑥),  𝑢 𝑥, 𝐻 = 0, 
𝑢(0, 𝑦)  =  𝑢(𝐿, 𝑦)  =  0,  

𝑢(𝑥, 𝑦)  =  𝑋(𝑥) 𝑌(𝑦) 

Solution  

𝑋′′
 𝑥  𝑌(𝑦)  + 𝑌′′

 𝑦  𝑋(𝑥) =  0  

  𝑋′′ 𝑥

 𝑋 𝑥
= − 

 𝑌′′
 𝑦  

𝑌 𝑦  
= −𝜆2 

𝑋′′ (𝑥) + 𝜆2𝑋(𝑥)  =  0 𝑌′′ 𝑥 − 𝜆2𝑌(𝑦)  =  0 
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Looking at the boundary conditions, we conclude if  𝑘 < 0  = −𝜆2 for case 3 

𝑋(𝑥)  = 𝐴 cos (𝜆𝑥)  + 𝐵 sin ((𝜆𝑥)  

and thus we get the general solution  for u(x, y) = X(x) and Y(Y) of 

𝑌(𝑦)  = 𝐶𝑒𝜆𝑦  + 𝐷𝑒−𝜆𝑦 

The B.C and IC are 

𝑋(0)  =  0 𝑋(𝐿)  =  0 

where A, B, C, and D are arbitrary constants need to be determined from initial and boundary conditions 

given in above equation. 

𝑋(𝑥)  = 𝐴 cos (𝜆𝑥)  + 𝐵 sin ((𝜆𝑥)  

𝑢(𝑥, 0)  =  𝑓(𝑥)  

𝑌(𝑦)  = 𝐶𝑒𝜆𝑦  + 𝐷𝑒−𝜆𝑦 

𝑢(𝑥, 𝐻)  =  0 

u(x, y) = [𝐴 cos (𝜆𝑥)  + 𝐵 sin ( 𝜆𝑥 ] (𝐶𝑒𝜆𝑦  + 𝐷𝑒−𝜆𝑦) 

From B.C     X(0) = 0: 

•Let us start with the solution: 𝑋(𝑥)  = 𝐴 cos (𝜆𝑥)  + 𝐵 sin ((𝜆𝑥)  

A cos (𝜆*0)  +  B sin (𝜆 * 0)  =  0,    which means that A = 0 

Now, from B.C): X(L) = 0: X(L)  =  0  =  B Sin(𝜆L) 

At this point, 𝐵 = 0, or Sin (𝜆 L) = 0 from the above relationship. A careful look at these choices 

will conclude that B ≠ 0, which leads to: 

Sin (𝜆L) = 0 λL = n𝜋            𝑜𝑟 λ𝑛 = 
n𝜋  

𝐿
 

𝑋′′ (𝑥) + 𝜆2𝑋(𝑥)  =  0 

𝑌′′ 𝑥 − 𝜆2𝑌(𝑦)  =  0 
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𝑋 𝑥 𝑛= 𝐵𝑛 sin  
n 𝜋  

𝐿
𝑥  

𝑌(𝑦)  = 𝐶𝑒
n 𝜋  

𝐿 𝑦  + 𝐷𝑒−   
n 𝜋  

𝐿 𝑦
 

u(x, H) = 0 

We are now ready to use the two boundary conditions to determine constants C and D in the above 

expression: 

The boundary condition 

Therefore, Y(y) becomes   

𝐶𝑒
n 𝜋  

𝐿
𝐻  + 𝐷𝑒− 

n 𝜋  
𝐿

𝐻
 = 0 

Thus 
𝐷 = −𝐶 𝑒  2 

n 𝜋  
𝐿 𝐻

 

Therefore  

𝑌 𝑦 = 𝐶𝑒
n 𝜋  

𝐿 𝑦  − 𝐶 𝑒  2 
n 𝜋  

𝐿 𝐻𝑒−  
n 𝜋  

𝐿 𝑦
 

𝑌 𝑦 = 𝐶 𝑒  
n 𝜋  

𝐿
𝐻 (𝑒−  

n 𝜋  
𝐿

𝐻  𝑒
n 𝜋  

𝐿
𝑦 −  𝑒   

n 𝜋  
𝐿

𝐻𝑒−  
n 𝜋  

𝐿
𝑦
 ) 

𝑌 𝑦 = 𝐶 𝑒  
n 𝜋  

𝐿 𝐻 (𝑒−  
n 𝜋  

𝐿  (𝐻 −𝑦)  −  𝑒   
n 𝜋  

𝐿 (𝐻 −𝑦)
 

𝑌 𝑦 = −2 𝐶 𝑒  
n 𝜋  

𝐿 𝐻  (sinh   
n 𝜋  

𝐿
 (𝐻 − 𝑦) 

𝑋(𝑥)  = 𝐴 cos (𝜆𝑥)  + 𝐵 sin ((𝜆𝑥)  
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Therefore, the solution of 𝑢(𝑥, 𝑦) becomes  

𝑢 𝑥, 𝑦 =  𝐵𝑛 sin  
n 𝜋  

𝐿
𝑥 −2  𝐶𝑛 𝑒  

n 𝜋  
𝐿

𝐻  (sinh   
n 𝜋  

𝐿
 (𝐻 − 𝑦)  

or 

f(x) =  𝑏𝑛 (sinh   
n 𝜋  

𝐿
𝐻)    sin  

n 𝜋  

𝐿
𝑥  

∞

𝑛=1

 

In order to determine constant coefficients bn in previous equation : 

The last remaining condition of u(x , o) = f(x) will be used for this purpose 

𝑢 𝑥, 𝑦 =  𝑏𝑛 sin  
n 𝜋  

𝐿
𝑥  (sinh   

n 𝜋  

𝐿
 (𝐻 − 𝑦)

∞

𝑛=1

 

𝑝𝑢𝑡 𝐹𝑛 =   𝑏𝑛(sinh   
n 𝜋  

𝐿
𝐻), we get  

f(x) =  𝐹𝑛  sin  
n 𝜋  

𝐿
𝑥  

∞

𝑛=1

 

The coefficient 𝑭𝒏 of the above Fourier series is: 

which is called a Fourier sine series (FSS) 

 𝑭𝒏 =
𝟐

𝒍
 𝑭 𝒙 𝒔𝒊𝒏

𝒏𝝅𝒙

𝒍
𝒅𝒙

𝒍

𝟎
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The two-dimensional wave equation 

Boundary conditions  

Solve this problem using separation of variables.  



27.11.2024 
Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal Engineering Analysis 

27 

Solution  

Firstly  
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Secondly  
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